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Generalized moment expansion for observables of stochastic processes 
in dimensions d> 1: Application to MOssbauer spectra of proteins 

Walter Nadler and Klaus Schulten 
Physik Department der Technischen Universitiit Miinchen, 8046 Garching, Federal Republic a/Germany 

(Received 26 August 1985; accepted 24 September 1985) 

The generalized moment expansion provides an effective algorithm for the approximation of the 
time dependence of observables that monitor stochastic processes. Up to now this method had 
been applied mainly to one-variable birth-death processes or to one-dimensional Fokker-Planck 
systems since in these cases analytical and numerical methods for the evaluation of the 
generalized moments were available. Here we demonstrate that numerical sparse matrix methods 
can be used to extend the range of application of the generalized moment expansion to higher 
dimensions. For this purpose we introduce a simple but general discretization scheme for Fokker­
Planck operators ofSmoluchowski type which is, for these special operators, superior to common 
numerical discretization schemes for differential operators. As an application we determine the 
Mossbauer absorption spectrum of a Brownian particle in certain two- and three-dimensional 
potentials. This serves as a model for the motion of the heme group in myoglobin. 

I. INTRODUCTION 
Dynamical processes in condensed phase systems can 

often be modeled to a satisfactory degree as stochastic pro­
cesses and are, therefore, described mathematically by 
means of Fokker-Planck equations (or the corresponding 
Langevin equations) or by their discrete analog, master 
equations. 1-4 Examples for the successful application of such 
a description range from transport phenomena in liquids and 
solids,4--6 even at phase transitions,7 to the behavior of 
chemical reaction systems 1 and of macroscopic quantum 
systems, e.g., lasers.2,3 Our own interest in this field arose 
from the fact that also in macromolecular systems ofbiologi­
cal origin it is possible to regard transport processes as sto­
chastic. Such processes range from the active and passive 
transport of biomolecules in cells and cell compartmentsB,9 
to the motion of atoms and side groups inside protein mole­
cules 10 and during the process of protein folding. 11 

Transport processes can be monitored through the ob­
servation of certain observables. Most often the long-time or, 
respectively, the low-frequency behavior of these observa­
bles is of interest. However, mathematical models for sto­
chastic processes admit analytical solutions only for very 
simple cases and the numerical long-time integration of the 
differential equations governing stochastic transport is often 
time consuming and susceptible to numerical errors. For this 
purpose a simple and effective approximation procedure has 
been developed which can reproduce the short- as well as the 
long-time behavior of observables correctly. 12 This method 
is based on the generalized moment expansion (GME) of 
observables and is an extension of the first passage time ap­
proximation,4,13-15 usually used for the description of diffu­
sion-controlled reactive processes. The approximation re­
quires the evaluation of the generalized moments which 
determine the short- and long-time behavior ofthe observa­
bles. The GME has already been used successfully for the 
approximate description of observables in rather different 
situations of stochastic transport: the fluorescence yield in 
continuous fluorescence microphotolysis 16 monitoring la­
teral diffusion in membranes, the Mossbauer absorption 

spectrum of Brownian particles17 and of proteins,t8 and to 
the relaxation of equilibrium correlation functions in non­
reactive Brownian processes19 and in the stationary state of 
autocatalytic chemical reaction systems.20 

However, up to now the application of the GME has 
been limited to transport problems which can be described 
by one-dimensional stochastic processes, i.e., one-variable 
birth-death processes and one-dimensional Fokker-Planck 
systems. In these situations the evaluation of the generalized 
moments, which involves the solution of inhomogeneous lin­
ear partial differential equations, is rather straightforward 
since analytical results19 or numerical methodsI6.17,19 are 
available. These numerical methods involve a discretization 
of the Fokker-Planck operator and, hence, lead to a system 
of inhomogeneous linear equations to be solved numerically 
for the determination of the generalized moments. In more 
general situations common numerical methods for the solu­
tion of systems of linear equations fail because of the high 
dimension of the matrices that arise from the discretization. 
However, these matrices contain mostly zeroes, i.e., are 
sparse. In recent years there have been developed both direct 
and iterative numerical algorithms to solve systems of linear 
equations which involve large sparse matrices (see, e.g., 
Refs. 21 and 22). This development will be exploited in the 
following paper. We will present an algorithm for the nu­
merical evaluation of the generalized moments that is appli­
cable also in higher-dimensional situations and employs 
sparse matrix methods. The algorithm will be tested on the 
Mossbauer line shape of Brownian particles moving in two­
and three-dimensional potentials which result from interac­
tions inside a protein. 

The paper is organized as follows: In Sec. II we define 
the stochastic processes and observables considered and give 
a short review of the GME and the approximation based on 
it. Nonreactive and reactive processes, up to now considered 
only separately in publications on GME, will be treated to­
gether. In Sec. III we apply the GME to Fokker-Planck 
systems in higher dimensions. For this purpose we suggest a 
discretization scheme of Fokker-Planck operators of Smo-
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luchowski type and discuss the numerical evaluation of the 
generalized moments. Finally, in Sec. IV, we will apply the 
methods of the preceding sections to evaluate the Mossbauer 
absorption spectrum of a Brownian particle which models 
the motion of the heme group in the protein myoglobin. 

II. STOCHASTIC PROCESSES AND GENERALIZED 
MOMENT EXPANSION OF OBSERVABLES 

We consider stochastic processes in ad-dimensional 
space V which may be finite or infinite. It will be useful to 
draw a distinction between nonreactive and reactive pro­
cesses. 

In the nonreactive case, the time evolution of the contin­
uous probability distribution p(x,t Ixo) is determined by the 
Fokker-Planck equation (FPE) 

~p(x,t IXc) = L (x)p(x,t IXc) (2.1a) at 
with initial condition 

pIx,! = alXc) = 8(x - Xc) , (2.1b) 

and a Fokker-Planck operator (FPO) of Smoluchowski 
type 

L(x) = V· D(x){V + P [VU(x)]}. (2.1c) 
These equations describe a diffusion process in a potential 
U(x) with a diffusion coefficient D(x) which may be in gen­
eral position-dependent but must not vanish anywhere. 
/3 = l/kBT is the inverse temperature. An FPO of type 
(2.1c) is encountered in most situations where detailed ba­
lance (see, e.g., Refs. 2 and 3) holds. In a nonreactive pro­
cess the total probability of the system is conserved. In case 
of an infinite diffusion space the probability current 

j(x) = D(x){V + P[VU(x)]} p(x,t Ixo) (2.2) 

must vanish then at infinity: 

lim j(x) = O. (2.3a) 

In case the diffusion space Vis finite, the component ofj(x) 
perpendicular to the surface aVof V has to vanish, i.e., 

n(x)· j(x)lxeav.n!av = a. (2.3b) 

Boundary conditions (2.3) guarantee that the thermal distri­
bution 

Po(x) =N- 1 exp[ -PU(x)) , (2.4) 

with N a normalization constant, is the unique stationary 
solution of Eq. (2.1). Averages with respect to Po(x) will be 
denoted by ( ). For Eq. (2.1) to be ergodic we require that 
the part of Vwhere Po(x) does not vanish is connnected, i.e., 
there are no potential walls of infinite height separating dif­
ferent parts of V. With the help ofEq. (2.4) we can bring the 
FPO (2.1c) into the convenient form 

L(x) = V· D(x) Po(x)VPo(x) -I. (2.5) 

In reactive stochastic processes, the total probability for 
the presence of a particle undergoing a diffusive motion de­
scribed by Eq. (2.1) decreases with time due to reactions 
either at the boundary and/or inside V. We will limit our­
selves to reactions of first order. Such reactions at the bound­
ary are described by supplying Eq. (2.1) with radiation 
boundary conditions2.3.13: 

n(x) • j(x) Ixeav. n!av = k(x) p(x,t IXc) Ixeav , (2.6) 

where k(x) is a, possibly position-dependent reaction rate 
coefficient defined at the boundary and n(x) a unit vector 
pointing out of V. For k~ one retains the nonreactive case, 
whereas k--oo implies that a reaction occurs with certainty 
if a diffusing particle reaches the boundary. Unimolecular 
reactions inside V are described by adding the reaction rate 
k(x), now defined inside V, as a reactive (optical) potential 
- k(x) to the FPO 

L(x) __ L(x) - k(x) . (2.7) 

For notational convenience we will denote reactive pro­
cesses solely by the FPO (2.7), even if the reaction rate k (x) is 
nonvanishing only at the boundary avo In reactive processes 
the probability distribution vanishes for t __ 00 and, there­
fore, Po(x) is not the stationary distribution. However, since 
the diffusive motion is still determined by the potential U (x), 
we can view Po(x) as a quasistationary distribution which is 
valid for very long times in the limit k--o. 

Observables of the stochastic processes defined above 
assume, in general, the form 

M(t) = Iv ddx Iv ddxo f(x)p(x,t IXc)go(Xc), (2.8) 

where go(Xc) is determined by the preparation of the stochas­
tic system and fIx) denotes how the system is monitored. In 
most experimental situations, even in case of reactive pro­
cesses, the initial distribution of the system is given by the 
thermal or quasistationary distribution Po(Xc). We therefore 
write go(Xc) in the form 

go(xo) =g(xo)Po(Xc). (2.9) 

M (t ) can then be viewed as an equilibrium correlation func­
tion 

M(t) = «f[x(t)] g[x(O)]» , (2.10) 

where « » denotes the average over the process (2.1) and 
over thermal initial conditions. 

With the use of the adjoint FPO L +,2.3.13 which in ana­
logy to Eq. (2.5) can be written as 

L +(x) = PO(X)-I V ·D(x)po(x)V, (2.11) 

the observable M(t) can be expressed 
way as an expectation value with 
Po«···) =fvddxpo(x)",), 

M(t) = (g(x)exp[L +(x)t ]f(x). 

In case of reactive processes one gets 

in a formal 
respect to 

(2.12) 

M(t) = (g(x)exp{ [L +(x) - k (x)]t} f(x) . (2.13) 

The adjoint operator L + is always confined to the function 
space given by the adjoint boundary conditions,2.3.13 i.e., for 
nonreactive processes 

n(x) • D(x) V f(x) Ixeav. olav = 0 (2.14a) 

or 

lim D(x)V f(x) = 0, (2.14b) 

respectively, and for reactive processes 

n(x) • D(x)V f(x) I"eav. n!av = k(x) f(x) Ixeav . (2.15) 

If transport processes are monitored with a finite time 
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resolution r- I, as is the case with observations of particles or 
excitations with a finite lifetime, e.g., in Mossbauer spectros­
copy (see Sec. IV), the observable assumes the form 

M(t) = e- rt «[[x(t)] g[x(O)])} 

= (g(x)exp{ [L +(x) - r]t I/(x) . (2.16) 

This demonstrates that observations with a finite time reso­
lution r- I are equivalent to reactive processes with a con­
stant reactive potential r. 

In case of nonreactive processes the observable M (t ) re­
laxes from the initial value 

M(O) = (/(x)g(x) 

to the value 

M( ex)) = ([(x) (g(x) 

(2. 17a) 

(2.17b) 

in the limit t-+ex). In general M( ex) ) does not vanish. For an 
analysis of the time behavior of M(t) it is sufficient to con­
sider only the relaxational contribution to M (t), i.e., the dif­
ference 

AM(t) =M(t) -M(ex). (2.18) 

Using the projection operator 

Jo+(x)/(x) = Iv ddx'/(x')po(x') = (/(x», (2.19) 

which projects onto the kernel of the adjoint operator L +, 
we can restrict L + to the part of its function space that lies 
outside its kernel 

{L + (x)}/ = [1- J 0+ (x)]L + (x) [1- J 0+ (x)) . 

Employing this method of restricting the function space 
(compare Ref. 19), the formal expression for AM (t ), in ana­
logy to Eq. (2.12), is 

AM(t) = (g(x){ exp[L +(x)t] I/ I(x) . (2.21) 

Since M ( ex) ) = 0 for reactive processes, the relaxational 
contribution AM (t ) is identical withM (t ) for these processes. 
For notational convenience we solely use AM (t ) in the re­
maining part of this paper to denote both Eqs. (2.13) and 
(2.21). 

Starting point of the GME is the Laplace transform of 
the observable AM (t): 

AM(ClJ) = 100 

dt e -<I>tAM(t) , (2.22) 

for which, in case of nonreactive processes, we obtain the 
formal expression 

AM (ClJ) = (g(x)l [ClJ - L + (x)] -I I / I(x) . (2.23a) 

The corresponding expression in case of reactive processes is 

AM(ClJ) = (g(x)[ClJ + k(x) - L +(x)] -I I(x). (2.23b) 

AM (ClJ) can be expanded for low and high frequencies: 

(2.24a) 

(2.24b) 

where the expansion coefficients, the generalized moments, 
are given by 

JL" = ( - It( g(x){ [L +(xWI 1+ I(x) , (2.25a) 

in case of nonreactive processes, and by 

P" = ( - 1)"( g(x)[L +(x) - k (x)]" [(x) , (2.25b) 

in case of reactive processes. It is important to note that the 
generalized moments JL" are well defined for n>O as well as 
for n < O. A general numerical method for the determination 
of the generalized moments will be presented in the next 
section. 

Once the Pn are known, they can be used for the con­
struction of an approximation .:lm(ClJ) to aM (ClJ). A very 
promising functional form for .:lm(ClJ) is a series of N Lorent­
zians 

N-I 
.:lm(ClJ)= L In[ClJ+r,,]-I, (2.26) 

,,=0 

which represents an [N - I, N] Pade approximant . .:lm (ClJ) 
should describe the low- and high-frequency behavior [Eq. 
(2.24)] of aM(ClJ) correctly. We therefore require that 
.:lm(ClJ) reproduces the first Nh high and the first NI low­
frequency moments J.L". With this requirement Eq. (2.26) 
represents a two-sided Pade approximation23 of AM(ClJ) 
around ClJ = 0 and ClJ -I = 0 and we call it a (Nh ,NI ) -general­
ized moment approximation. The sum of Nh and NI must be 
even, i.e., Nh + NI = 2N. The parameters I" and r" of Eq. 
(2.26) are determined from the generalized moments 
through the relations 
N-l 

L In r;;r = J.Lm' m = - N I, - NI + 1, ... ,Nh - 1 . 
,,=0 

(2.27) 

An algorithm for the solution of these nonlinear equations is 
given in Refs. 12 and 16. 

We may stress that in practical applications mainly the 
low-frequency moments are responsible for the characteris­
tic features of the temporal behavior of observables. I 6-20 
Therefore, the generalized moments for n < 0 must be in­
cluded primarily in the approximation and their evaluation 
is of special importance. 
III. NUMERICAL DETERMINATION OF GENERALIZED 
MOMENTS 

As a first step for the evaluation of the generalized mo­
ments defined in Eq. (2.25) it is useful to introduce auxiliary 
functions J.L" (x) through 

J.L,,(x) = (-l)"{[L +(x)]"h+ I(x) , n;60, (3.la) 

J.Lo(x) =/(x) - (/(x», 

in the nonreactive case and 
J.L" (x) = (- I)"[L +(x) - k(x)]"I(x) , n;60, 

(3.lb) 

J.Lo(x) = I(x) , 
in the reactive case. It is clear from Eq. (2.25) that the gener­
alized moments can be calculated easily from these auxiliary 
functions by the use of the relation 

J.L" = (g(x) J.L,,(x». (3.2) 
For n > 0, i.e., for the high-frequency moments, one 

easily sees that the following properties: 

and 
J.L,,(x) = -{L+(x)}t J.L,,_I(X) , n>O, (3.3a) 

tt" (x) = - [L +(x) - k(x)] J.L,,-I (x), n >0, 
(3.3b) 
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respectively, hold. Hence, the auxiliary functions of the 
high-frequency moments ~I' ~2"" can be obtained in an 
iterative way by successive application of operators 
{L +(x)h+ and [L +(x) - k(x)], respectively, onto the 
zeroth auxiliary function ~o(x). Though, in principle, this 
can be done always analytically, actual calculations may be­
come cumbersome. We may note that in Eq. (3.3a) the ap­
plication of the projection operators [1 - J 0+] may be 
dropped since L + itself projects onto the function space out­
side its kernel. 

For n < 0, i.e., for the low-frequency moments, by multi­
plication of Eq. (3.1) with the respective operator from the 
Ihs one obtains the partial differential equations: 
{L+(x)h+ ~_n(x)= -~-(n-l)(x), n>O, (3.4a) 

and 
[L+(x) -k(x)] ~_n(x) = -~-(n-l)(x), n>O, 

(3.4b) 
respectively. These equations have to be solved using the 
respective boundary conditions (2.14) and (2.15) for the 
adjoint operator L +. We may note that the solution ofEq. 
(3.4a) for the nonreactive processes is equivalent to the solu­
tion of the corresponding differential equation with the un­
restricted operator L +, 

L+(x)~_n(x)= -~-(n-l)(x), n>O, (3.4a') 

where the solution ~-n (x) has to fulfill the orthogonality 
relation 

Jo+(x)~_n(x)=O. (3.5) 
By successive solution of Eqs. (3.4) the auxiliary functions 
for the low-frequency moments ~-1' ~-2' .. , can be ob­
tained. 

In Ref. 19 we presented a general analytical solution for 
(3.4a) in case the diffusion space V is one-dimensional. For 
the reactive case, Eq. (3.4b), even in one dimension, an ana­
lytical solution is available only for special situations, e.g., 
reactions only at the boundary. This latter situation is relat­
ed to first passage time problems. 13

•
24 For general reactive 

one-dimensional systems and for all higher-dimensional sys­
tems analytical solutions for ~ _ n (x) are not available and a 
numerical evaluation is necessary. Numerical methods can 
also bring considerable computational simplifications to the 
determination of the high-frequency moments. To this end 
we employ the following discretization procedure for prob­
lems (3.3) and (3.4). 

We subdivide a d-dimensional rectangle R d 

=L1 XL2 X",XLd that encloses V into N 
=N1XN2X .. ·Nd cells of size tid (see Fig. 1). Each cell is 

identified by ad-tuple n = (n 1,n2, ... ,nd) and the value of a 
function corresponding to a cell is represented by its value at 
a certain position inside the cell. Discretized functions, 
therefore, can be thought of as vectors f, the N components 
of which are numbered by n, 

(fl. =f[x(n)] . (3.6) 

For the representative discretization points we choose the 
centers of the cells 

n/ = 1, ... ,N/ 
x/(n/) =x1•min + (2n l - l)ti/2,. (3.7) 

1= 1, ... ,d. 
With this choice of discretization points a sum over all com-

- + 

- + - + 

Ly - + - + 

- + - + 
I 

- + 

L - .1. - .J.. - .1. 

2 

I .. Lx 
xmin 

- + 

- + 
I 

- + 

- + 

- ..J.. - .L 

'T 
6 

-lJ.. 

I 

- , 
- ..J 

Nx 

~ 
x max 

FIG. 1. Partitioning of the dilfusion space Vinto cells in a two-dimensional 
case. 

ponents of vector f corresponds to a numerical integration 
over V according to the midpoint rule.2s This rule has the 
same convergence properties as the more common trapezoi­
dal rule. However, in contrast to the trapezoidal rule, there 
are no special summation weights for the boundary of V 
which bears some advantages in higher-dimensional calcula­
tions. 

The common discretization schemes for partial differ­
ential operators that are used in numerical mathematics2

&-28 

have some disadvantages in case of a Fokker-Planck opera­
tor L or its adjoint L +, as is discussed in Appendix A. There­
fore, we use an equivalent master equation operator which 
has the same convergence properties as operators discretized 
in a common way but, in addition, retains some essential 
properties of the FPO (compare Appendix A). We first de­
fine transition rates between cells 

(3.8) 

where Po is the discretized thermal distribution (2.4). Transi­
tion rates from or to cells outside of the diffusion space V are 
required to be zero, corresponding to a vanishing stationary 
distribution outside V and reflective boundary conditions 
(2.3), respectively. The time scale r is given by 

r=ti2/D, (3.9) 

where we have assumed, for simplicity, a constant diffusion 
coefficient. The more general case employing a position­
dependent diffusion coefficient is discussed in Appendix B. 
Using the transition rates (3.8) we can replace the FPE (2.1) 
with the master equation 

a 
-p = L(Ml P (3.10) at 

for a hopping process between the above defined cells. The 
components of the master equation operator LIM) are given 
by 
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L (M) = m,:t/(n) (3.11) 

{

- '} W(n-+m') for m=n, 

n,m W(m-+n) for meN(n) , 

o otherwise. 

N (n) is the neighborhood of cell n and denotes the set of cells 
that share a cell wall with cell n. The above choice of transi­
tion rates at the boundary of V guarantees conservation of 
probability. 

Reactive processes are described by a diagonal reaction 
matrix K with the property 

KD,m = 8n,m (k)D , (3.12) 

where 8n,m is the Kronecker symbol and k is the discretized 
position-dependent reaction rate. In case reactions occur 
only at the boundary, this vector has nonvanishing compo­
nents only for values of n corresponding to boundary cells, 
which are those that have cell walls not shared with other 
cells. The value (k)n for the discretized reaction rate in 
boundary cell n has to be chosen at a representative point of 
the boundary a V inside cell n so that boundary condition 
(2.6) is fulfilled. In situations with reactive potential and 
reactive boundary conditions the two respective rates have 
to be added for boundary cells. 

The above defined matrix operator L (M) has the typical 
properties of a master equation operator. In particular the 
following properties hold: 

(i) The stationary distribution ofEq. (3.10) is given by 
Po, i.e., Po is the single eigenvector of L (M) with eigenvalue 
zero. In addition, L (M) obeys the principle of detailed ba­
lance with respect to Po: 

L~!) (PO)m =L;:") (Po)n, foralln,m. (3.13) 

(ii) The discretized adjoint operator is given by the 
trans-posed matrix L (M)T, 

L +(M) =L (M)T =L (M) 
D,ID n,m M,D • (3.14) 

(iii) The matrix operator UMl can be symmetrized by a 
simple transformation, 

UM,sl = S-lUMlS = S L +(MlS-l, 

with 

Sn,m = (Po):,n 8n,m • 

(3.15a) 

(3.15b) 

This transformation leaves the diagonal terms La,n invar­
iant; the other components assume the simple form 

L (M,sl = {r- 1 
for meN (n) , 

n,m 0 otherwise. 
(3.16) 

We may note that for actual calculations an infinite dif­
fusion space V has to be limited to a finite one by introducing 
a boundary. This boundary has to be chosen in such a way, 
that the essential part of the stationary distribution is includ­
ed and, therefore, depends on the potential U(x); see Sec. IV 
for a practical example. 

Using the above discretization, Eqs. (3,3) and (3.4) for 
the determination of the auxiliary functions .... n (x) are 
changed into systems of linear equations. 

The discretized auxiliary functions .... n of the high-fre­
quency moments are determined iteratively from 

.... n = - L + (M) .... n _ l' n > 0 , 

l'o=f-(/)1 

in the nonreactive and 

....n = - [L + (M) - K 1 .... n _ In> 0 , 

l'o =f 

(3.17a) 

(3.l7b) 

in the reactive case. Here 1 represents the vector with all 
components unity. The expectation value (I) may be calcu­
lated from the discretized vector f by the scalar product 
(I) = Po· f. The evaluation of Eq. (3.17) can be done by 
simple matrix mUltiplication and the numerical evaluation 
poses no special problems. 

The differential equations (3.4) for the auxiliary func­
tions of the low-frequency moments are represented now by 
the linear equations 

L + (M) .... _n = - .... -(n-I)' n>O 

in the nonreactive case and 

(3.18a) 

[L+(M)-K1 .... _n=- .... _<n_I)' n>O (3.18b) 

in the reactive case. Equation (3.18b) can be solved in prin­
ciple in an unequivocal way. This is not the case for Eq. 
(3.18a) since L + (M) has the property 

L +(M)I=O, (3.19) 

and, therefore, the general solution ofEq. (3.l8a) is defined 
only up to an arbitrary additive vector c • 1. The solution we 
seek must fulfill the discretized orthogonality relation corre­
sponding to Eq. (3.5), 

(3.20a) 

where we have represented the projection operator Jo+ as a 
dyadic product (1 per) with per the vector transposed to Po· 
Condition (3.20a) is equivalent to 

PO· .... -n =0. (3.20b) 

For the numerical evaluation ofEq. (3.l8a) subject to the 
condition (3.20) the following strategy is useful: One looks 
for a special solution ofEq. (3.18a) with the property 

( .... -n)N = 0, (3.21) 

where .... n is assumed to be a vector of dimension N. The 
solutionofEq. (3.18a) under condition (3.21) is equivalent 
to the solution of the reduced system of linear equations, 

L + (M),<N-l) .... ~N-I) = _ .... ~~~I) . (3.22) 

In this system the N X N matrix L + (M) is replaced by the 
following (N - 1) X (N - 1) matrix, 

(

L ij 
L +(Ml,(N-ll = : 

LtN-l 

(3.23) 

and the vectors .... _ n are replaced by the corresponding vec­
tors without the N th component. This system oflinear equa­
tions is solvable in principle in an unequivocal way since it 
has lost the property (3.19). Using the special solution 
.... ~,;- I) the solution of Eq. (3.18a) which obeys condition 
(3.20) is 
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( ..... ~N-I)) ..... -n = 0 +cl, (3.24) 

where the constant c is determined through Eq. (3.20) to 

c = - paN-I) ...... <.:"n- I ) . (3.25) 

The single remaining problem is the numerical solution 
of the linear equations (3.18b) and (3.22). In the one-di­
mensional case the matrix operator L + (M) has a tridiagonal 
structure. In this case the well-known Gaussian elimination 
scheme for the solution oflinear equations is very simple and 
efficient (see, e.g., Ref. 27, p. 198, or Ref. 29, p. 166). We 
have used this method in earlier applications. 16-19 

In higher-dimensional systems the matrix operator 
L + (M) has a more complicated band structure. However, the 
matrix is sparse since in the d-dimensional case less than 
(2d + l)NofitsN 2 elements arenonvanishing. Therefore it 
is possible to do calculations for higher-dimensional prob­
lems with a considerable number of discretization points us­
ing sparse matrix techniques21

•
22 for the numerical solution 

ofEqs. (3.18a) and (3.22). 
In the applications of this contribution we used the 

"Yale Sparse Matrix Package," 30.31 a program package 
which employs a direct method for the numerical solution of 
the linear equations. It is sufficient for applications to essen­
tial two-dimensional systems, as considered here. Since stor­
age requirements of direct methods are relatively large29 the 
applications to problems in dimensions greater than two is 
only possible for simple cases. However there are already 
available efficient iterative algorithms with much fewer stor­
age requirements32

-
34 which can be applied in such cases. 

An additional reduction in storage requirement and 
computer time results if one takes advantage of the symme­
try transformation (3.15) for the FPO and its adjoint. Equa­
tion (3.15) transformsEq. (3.18) into the symmetric system 
of linear equations 

L + (M.s) ..... <:> n = - ..... <:> (n _ I) 

in the nonreactive cases and 

[L + (M.s) - K] ..... <:>n = - ..... <:>(n-I) 

in the reactive case, respectively. Here 

..... <:>n = S ..... -n 

(3.26a) 

(3.26b) 

(3.27) 

denotes the symmetrized auxiliary function. In addition, us­
ing the symmetrized functions (3.27), relation (3.2) for the 
last step of the determination of the generalized moments 
may be written in a rather simple way: 

..... -n =gTS2 ..... _ n =g(S) • ..... <:>n. (3.28) 

We may note that for the implementation of the above 
algorithm on a computer it is useful to transform the d-com­
ponent index n into a scalar index V(d). This can be done in an 
unequivocal way through the relation 

d I-I 

v(d) =nl + 2: (n/ -1) II N k , 
/=2 k= I 

(3.29) 

where we have assumedN1>N2>···>Nd • The inverse trans­
formation is given by 

n l = 1 + [V(d) -1] modN1 , (3.30a) 

n/ = 1 + { [V(d) - v(/ - 1)]/»: Nk} mod N/, I> 1 . 

(3.30b) 

However, in case the diffusion space is smaller than the rec­
tangle R d, the indices of cells outside of V have to be left out 
and the numbering of V(d) has to be changed in an appropri­
ate way. 

In closing this section we like to stress that the GME can 
also be employed if a stochastic system is posed from the 
outset in terms of a master equation (3.10). This should be 
evident from the fact that the discretization scheme intro­
duced here has led us to consider a master equation rather 
than a Fokker-Planck equation. In case the master equation 
is derived from a FPE (2.1) based on a potential U(x) the 
detailed balance relation (3.13) holds for the elements of the 
matrix L(M). We like to note, however, that the GME de­
scribed above can also be employed for more general master 
equations and, correspondingly, also for a FPE with a force 
term not derived from a scalar pot~ntial. 

IV. APPLICATION: MOTION OF THE HEME GROUP IN 
MYOGLOBIN 

Though proteins are rather densely packed consisting of 
some 10Z to 104 atoms they are, in particular at physiological 
temperatures, very flexible and their structure undergoes 
strong fluctuations. 35

-
37 There are indications that these 

structural fluctuations are essential for their enzymatic ac­
tivity38.39 and, therefore, there is a growing interest into a 
deeper understanding of the internal motion of atoms and 
groups of atoms inside proteins. 10

•
40 The time scale of the 

atomic motion is rather short ( SIps) and on this time scale 
the motion of individual atoms displays strong similarities to 
that in fluids. On longer time scales the individual atoms 
take part in the concerted motion of larger groups. The mo­
tion of such a protein segment can be considered stochastic, 
with the rest of the protein and the surrounding solvent act­
ing as a heat bath and influencing the motion through noise 
and frictional forces. This approach bears some similarities 
to theories considering chemical reactions in solvents.41 It 
leads to an effective one-particle model which describes the 
motion of a protein segment along a relevant coordinate x 
(e.g., center of mass, rotational angle, etc.) through a 
Fokker-Planckequation (2.1). The effective potential U(x) 
and diffusion coefficient D are determined by the surround­
ing protein. 

Frauenfelder et al. 3
6,42 have argued that internal mo­

tions of proteins on longer than atomic time scales are main­
ly due to fluctuations between conformational substates. 
These conformational substates can be represented by multi­
minimum potentials and we have discussed such models in 
one dimension in Refs. 17 and 18. There we demonstrated 
that the description of the motion can be simplified by using 
a smoothed potential and an effective diffusion coefficient 
with an Arrhenius-like temperature dependence. To ac­
count correctly for the temperature dependence of observa­
tions in case of the motion of the heme group in myoglobin, 
at least one additional substate oflow energy had to be intro­
duced. However, due to the limitations of one-dimensional 
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models in the description of essential three-dimensional mo­
tion, rather unphysical small linear extensions of this sub­
state had to be assumed. In order to demonstrate that this is 
not the case in higher-dimensional models we supply an ex­
tension of our earlier calculations to dimensions d = 2 and 
d = 3 using the method presented in this paper. 

In our model the diffusive motion of the heme group is 
determined by a d-dimensional potential, the form of which 
is sketched qualitatively in Fig. 2. The substates between the 
dashed lines are represented by an effective diffusion coeffi­
cient 

(4.1 ) 

The smoothed potential is of radial symmetry and consists of 
an harmonic envelope potential with a superimposed low­
energy substate the form of which we choose for simplicity to 
be Gaussian 

Uetr(r) = !(rlro)2 - AE· exp[ - !(rlso)2]. (4.2) 

As in Ref. 18 we use kB~ = 3.6 X 10-4 A? IK as the param­
eter for the harmonic envelope potential. This choice is in 
accordance with room temperature x-ray data.36 The repre­
sentative substate in Eq. (4.2) describes the contributions 
from energetically low substates whose existence is indicated 
by low-temperature x-ray data.36 Altogether, with our mod­
el we reduce the description of the stochastic motion of the 
heme group to four parameters: Do,Eo describing the effec­
tive diffusion coefficient of the group and SO' AE describing 
the width and depth of the stable substate. 

The motion of the heme group can be monitored 
through observation of the motion of its central Fe atom by 
Mossbauer absorption spectroscopy. For 57Fe, Mossbauer 
spectroscopy can give information on dynamical properties 
in a time window of about 1-100 ns. The Mossbauer spec­
trum of a diffusing Fe atom is given by43.17 

l(w) = Re{S(k,iw)} 

with the dynamic structure factor 

.!:! 
c ... -o 
a. 

position x 

(4.3a) 

FIG. 2. Sketch of the profile of a microscopic d-dimensional potential that 
can be approximated by the effective diffusion coefficient (4.1) and the effec­
tive potential (4.2). 

S(k,w) = 100 

dte-<»te -rt/2{(exp{i k· [x(t) -x(O)]}». 

(4.3b) 

We have chosen S~ 00 dwl(w) = 11' as normalization of the 
spectrum. k is the momentum of the absorbed r quantum 
with Ikl = 7.3 A -I. r = 7.0X 106 

S-I is the lifetime of the 
excitation of the 57Fe nucleus. From Eq. (4.3b) it is clear 
that the structure factor is an observable of type (2.16). 
Therefore, an approximation of the spectrum can be made 
using the GME with the monitoring functions 
I(x) = g'" (x) = exp(i k·x) and a constant reactive term r 1 
2. It has been demonstrated in Refs. 17 and 18 that a 3-
Lorentzian description of the spectrum using a (1 ,S) -gener­
alized moment approximation (see Sec. II), i.e., employing 
mainly low-frequency moments, is sufficient for a compari­
son with the observations. From Eq. (2.26) it can be seen 
that such an approximate absorption spectrum has the form 

2 

l(w) =2 I rn /,,(r~ +(2)-I, (4.4) 
n=O 

with the amplitude In describing the integral intensity and 
2r n the linewidth of the corresponding Lorentzian contri­
bution to the spectrum. The index zero is chosen to denote 
the resonant line, i.e., the line with (half) linewidth r 0 

= r 12. We will compare the temperature dependence of the 
amplitude/o ofthe resonant line, i.e., the Lamb-Mossbauer 
lactor, and the amplitude II and linewidth r I of the first 
broadened line with the experimental data of Parak et 
al.44

.45; the third line in the approximated spectrum can be 
viewed as the background. 

The generalized moments J-Lo, .... -1,. .. ' .... -5 employed in 
the approximation were calculated using the method of Sec. 
III. In case of a three-dimensional motion equations (3.4b) 
have a cylindrical symmetry around the axis defined by vec­
tor k and, therefore, the problem of the determination of the 
auxiliary functions can be reduced to a two-dimensional one. 
A substitution of the radially symmetric equilibrium distri­
butionPo(r) = poe p, z) by 

p~(p, z) = PPf}(p, z), p = (x2 + r)1/2, (4.Sa) 

brings the adjoint operator into the form 

L +(p, z) = D ([PPo(p, z)] -I ap [PPo(p, z)]ap 

+ Pol p, Z)-I az Pol P, z}az } 

= D (p~(p, Z)-I ap p~(p, z}ap 

+p~(p,z)-Iazp~(p,z)}. (4.Sb) 

In this form a discretization of the operator according to Sec. 
III is possible. In the numerical calculations the infinite dif­
fusion space was limited to a rectangle [0, Pmax ] 

X [ - Zmax' Zmax ], corresponding to a section through a cyl­
inder of height 2zmax and radius Pmax' This rectangle was 
divided into 71 X 141 cells. The choice of an odd number of 
cells is necessary to take into account properly the contribu­
tion from the, possibly small, central substate. The value of 
Zmax was chosen to be 

Zmax = 3(r)1/2 (4.6) 

with (r) the mean half-width ofthe stationary distribution 
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FIG. 3. Comparison of the observed (Refs. 44 and 45) temperature depen­
dence of the Mossbauer spectrum from myoglobin with the spectrum pre­
dictedfrom our stochastic model (see the text) in d = 2 andd = 3 (param­
eters see Table 1);10 denotes the Lamb--Mossbauer factor (0,-), i.e., the 
amplitude of the resonant line;/t denotes the amplitude ( + ,---) and r 1 the 
width (6,-) of the broadened line. As done in Refs. 45 and 18, the ampli­
tude for a superimposed harmonic mode has been subtracted from the data 
forlo· 

in the harmonic envelope potential. This choice is a good 
compromise for potentials whose large-distance behavior is 
given by a harmonic potential. The value of Pmax is deter­
mined from the discretization length /) resulting from Eq. 
(4.6) and the number of discretization points; it has almost 
the same value as Zmax • 

In case of a two-dimensional motion we limited the dif­
fusion space to the square [ - Xmax ,xmax ] 

X [ - Ymax,Ymax], divided into 101 X 101 cells, with Xmax 

and Ymax determined by Eq. (4.6). We may note that the 

above discretizations result in matrix operators with a di­
mension N of order 104

, a size that would not be tractable by 
other than sparse matrix techniques . 

Figure 3 shows a comparison of the temperature depen­
dence of the spectrum obtained from our model with the 
experimental results. The corresponding parameters which 
provided the best agreement with the observations are given 
in Table I and compared with the parameters from the one­
dimensional model of Ref. 18. The theoretical predictions 
agree well with the observations. Discrepancies are found 
only for the amplitude!! of the broadened line. These can in 
part be attributed to a certain arbitrariness in the determin­
ination of the contribution of the background in the theoreti­
cal description as well as in the observations. However, the 
qualitative temperature dependence and the magnitude of 
the contribution of this line is reproduced correctly. 

A comparison of the parameters for models (4.1) and 
( 4.2) in different dimensions shows them to be rather inde­
pendent of the dimension of the diffusion space, with the 
exception of the quantity So. The values for the energy of the 
substate and the prefactor as well as the activation energy of 
the diffusion coefficient (4.1) are comparable to those al­
ready obtained in case of the one-dimensional model. The 
values for the linear extension So of the substate depend 
strongly on the dimension. For d = 1 the rather unphysical 
small value of2.0 X 10-4 A had been obtained in Ref. 18. For 
the two- and three-dimensional descriptions provided here 
this parameter is about 10-2 A, a value more appropriate in 
comparison with interatomic distances. We may note, 
though, that the value for So for the three-dimensional de­
scription probably is too high since in the discretized form of 
the cylindrical symmetric problem (3.4b) the contribution 
from the energetically lowest part of the substate is taken 
into account insufficiently. For an interpretation of the ex­
tensions of the stable substate one should compare the vol­
ume of this substate with the average volume accessible to 
thermal motion. The ratio of these volumes is approximately 
given by 

fl re1 z(,ro/(r2»d12, (4.7) 

with (r2) the mean half-width of the thermal distribution in 
the harmonic envelope potential. This ratio is rather inde­
pendent of the dimension and assumes at room temperature 
the values flre1 zO.6x 10-3

, 10-3, and5X 10-3 ford = 1,2, 
and 3, respectively. 

For a more detailed discussion of the results above con-

TABLE I. Parameters for the description of observed Mossbauer spectra from myoglobin using our stochastic 
model (see the text) with diffusion coefficient (4.1) and potential (4.2). 

Effective 
Central substate diffusion coefficient 

Energy Linear Activation 
difference extension Diffusion coefficient energy 

Dimension flE/kBlK] SolA] DolI08A2/s] EoIkBlK] 

d= I" 1900 2.0X 10-' 8.3 1100 
d=2 1875 LOx 10-2 11.0 1000 
d=3 1950 5.6X 10-2 11.0 1000 

• Data from Ref. 18; So corresponds to the quantity (11/2) 1/2 exp ( - M /kB ) 1".< in that reference. 
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ceming the implications for protein dynamics and a com­
parison with molecular dynamics studies we refer to Ref. 18 
and a forthcoming publication.46 
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APPENDIX A: COMPARISON OF THE COMMON 
DISCRETIZATION SCHEME FOR THE FOKKER­
PLANCK OPERATOR WITH THE DISCRETIZATION VIA 
AN EQUIVALENT MASTER EQUATION OPERATOR 

To clarify the essential points it is sufficient to limit the 
considerations to the one-dimensional case. For simplicity, 
we neglect a discussion of boundary conditions and assume a 
position-independent diffusion coefficient D. In this case, 
the FPO (2.lc) can be written in the form 

L (x) =D [(B2/Bx2) +P U'(x)(B/Bx) +/3 UNIx)]. (AI) 

In common discretization schemes26.28 this elliptic operator 
is approximated by a difference operator L(c) with the ele­
ments 

forj = i, 

forj = i ± 1, (A2) 

otherwise, 
where 8 is the discretization length and x; = Xmin 

+ (2i - 1)c5/2 in case the discretization points are chosen 
according to Sec. III. As can be shown easily using Taylor 
expansion, the matrix operator Uc) is a second-order approxi­
mation to L (x) in the sense that the following relation holds: 

L (x;)f(x/) = (Uc)f); + OW). (A3) 

This common form of discretization has some impor­
tant disadvantages. In particular, the matrix operator L(c) has 
lost some essential properties of the FPO (AI). First of all, 
the conservation of total probability is not guaranteed any­
more: 

d d 
dtP"",(t) = dt ep(t) 

=17"L(c)p(t)=0(82)#O in general. (A4) 

This follows from the fact that the sums over the columns of 
the matrix operator do not vanish in general, i.e., 

(l t
L(C»j = L L rj) = 0(82

) for allj, (AS) 
; 

as can be shown by Taylor expansion. This limitation be­
comes relevant for potentials with anharmonicities of at least 
fourth order, since the leading term on the right-hand side of 
Eq.(A5) is given by U(4)(X). Properties (A4) and (AS) are 
equivalent to the fact that the discretized stationary prob­
ability distribution Po is, in general, not the eigenvector of 
L (c) with the eigenvalue zero, i.e., 

(L(C)po); = (Po);O(82) foralli. (A6) 

Correspondingly, the condition of detailed balance does not 
hold, i.e., 

LW(Po)j#L}IC)(po); ingeneral. (A7) 

Therefore, in the numerical evaluation of quantities that are 

determined by the stationary distribution (or by the zero 
eigenvalue) errors can occur. Besides, in case of numerical 
long-time integration of the FPE with the help of Uc) instabi­
lities may appear, e.g., the probability distributions may di­
verge or vanish. These problems can be avoided only if very 
small values of 8 are chosen. 

In addition, the matrix operator Llc) cannot be symme­
trized, whereas this is possible for the original FPO (AI) in 
the sense that Eq. (AI) can be transformed into a self-adjoint 
operator.3 This problem could be circumvented by discretiz­
ing the symmetric form of L (x) 

L (S)(x) = [Po(x)] - 1/2L (x) [Po(x)] 1/2 

=D {B2/Bx2) - [!PU'(x)F + !/3U"(xJl. (A8) 

However, the limitations (A4) to (A 7), discussed above, hold 
in an equivalent form for such a symmetric matrix operator. 

Furthermore, in some cases the condition of nonnegati­
vity, 

L ~1/L ~~)<.O, i#j, (A9) 

a property that guarantees convergence of some numerical 
methods,26 is fulfilled only for very small values of 8. 

All these properties, arising from the discretization 
(A2), lead to numerical problems which superpose the inher­
ent problems deriving from the numerical methods em­
ployed and from the finite precision of the numerical compu­
tation. 

As can be shown easily, the master equation operator 
L(M) does not have these disadvantages. For the FPO (AI) 
L(M) assumes the form 

{ 

- (L ~~)1.; + L ~~L ) 
LW)= T-l[(PO)J~PO);±1]1/2 

forj = i, 

forj=i± 1, 

otherwise. 
(AW) 

In particular, the following properties hold: 
(i) L (M) is a second-order approximation to Eq. (AI), 

in the sense ofEq. (A3) and, therefore, has the same conver­
gence properties as L (cl: 

(ii) L (M) conserves the total probability since, because 
ofEq. (AW), the following relation holds: 

17"L(M) = 0; (All) 

in particular, Po is the eigenvector of LIM) with eigenvalue 
zero and detailed balance holds. 

(iii) LIM) can be symmetrized acording to Eq. (3.15). 
(iv) UM) fulfills the condition of nonnegativity (A9). 
In using UM), the choice of the discretization length 8 is 

mainly determined by the quality of the approximation and 
not by the additional criterium of numerical stability. In 
practical application one notices that, in comparison to the 
use of Uc), one can choose larger values of 8 and, therefore, a 
smaller number of discretization points is sufficient. 

We may note that both the conventional discretized op­
erator Llc) as well as the master equation operator L(M) do not 
always have the property of diagonal dominance, 

(A12) 

which is, besides Eq. (A9), another criterion for conver-
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gence of numerical methods.26
•
29 However, the discretized 

adjoint operator L + (M) is given by the transposed matrix 
L (M)T. Because of the form (A1O), this adjoint operator ful­
fills condition (A12) with the equality sign. This indicates 
that it can be numerically safer to calculate the discretized 
auxiliary functions ~n with the use of the adjoint operator 
rather than with the use of L (M), which also would be possi­
ble (see Ref. 19). 

APPENDIX B: DISCRETIZATION OF THE FOKKER­
PLANCK OPERATOR IN CASE OF A POSITION­
DEPENDENT DIFFUSION COEFFICIENT 

In this case the discretization of the operators Land L + 

is very similar to that presented in Sec. III. We use the trans­
formed operators 

L'(x) =L(x)(D(x»D(x)-l 

= (D(x»V' [D(x)po(x) ]V[D(x)po(x)] -I, 
(B1a) 

L +'(x) = (D(x»D(x)-IL "+(x) 

= (D(x) )[D(x)po(x)] -IV· [D(x)po(x) ]V. 
(BIb) 

This transformation is possible since D(x) does not vanish. 
The transformed operatorsL ' andL +' have a structure com­
parable to that ofEqs. (2.5) and (2.11), respectively, with a 
constant diffusion coefficient which is a prerequisite for the 
discretization according to Sec. III. The constant diffusion 
coefficient is given by the global thermal average of D(x), 

D' = (D(x», (B2) 

and the stationary distribution Po(x) is replaced by the 
transformed distribution 

Po (x) = D(x)po(x). (B3) 
The operators L ' and L +' can, therefore, readily be discre­
tized to master equation operators L (M)' and L + (M)', respec­
tively, using the method of Sec. III. In particular, 
L (M)' and L + (M)' have all the convenient properties dis­
cussed there. 

However, because of the transformations (Bl) the dis­
cretized Fokker-Planck equation (3.10) and Eqs. (3.17) 
and (3.18) for the determination of the discretized auxiliary 
functions ~n now assume slightly different forms. 

For Eq. (3.10) we get 

atP = L (M)'D p, 

where D is a diagonal matrix with 

DI,J = t51• JD(xl )ID'. 

(B4) 

(B5) 

Equation (B4) can be used for the numerical integration of 
the FPE since the operator 

L (M,D) = L (M)'D (B6) 

is a second-order approximation in the sense of Eq. (A3) to 
the FPO L (x), as can easily be seen by Taylor expansion. In 
addition, we may note that L (M,D) fulfills the condition of 
detailed balance with respect to Po, i.e., 

L (M.D) (p ) - L (M,D) (p ) 
I,J 0 J - I.J 0 I for all i, j, (B7) 

which is easily proven using definition (3.8) of the transition 
rates and employing the transformed distribution (B3). 

In an analogous way we get for the discretized auxiliary 
functions ~n the following equations: Eqs. (3.17) for the 

high-frequency moments change to 

~n = - DL + (M)'~n_l 

and 

(B8a) 

~n = - [DL + (M)' - K]~n_l> (B8b) 

respectively, whereas Eqs. (3.18) for the low-frequency mo­
ments become 

DL +(M)'~n = - ~-(n-l) (B9a) 

and 

[ DL +(M), - K]II._ n = r- -~-(n-l» (B9b) 

respectively. The application of the numerical algorithms for 
the solution of these equations discussed in Sec. III is 
straightforward. 
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